
HUAWEI CLOUD Microservice Tool 

Improves Development Efficiency

Department: Application Platform Service

Author: Wang Qijun

Date: 2019-09-20

Security Level:



Contents

1. Tool for Splitting Monolithic Applications into Microservices

2. Contract Management Tool



3

Advantages of the Microservice Architecture

Factor Monolithic Architecture Microservice Architecture

Delivery speed Slow Fast

Fault isolation scope Thread-level Process-level

Overall availability Low High

Continuous evolution Difficult Easy

Communication efficiency Low High

Technology stack selection Restricted Flexible

Scalable Restricted Flexible

Reusability Low High

Difficulty in breaking down business complexity Difficult Easy

Product innovation complexity Difficult Easy

Cost for achieving consistency Low High

Latency Low High

Resource cost Low High

Correlation query complexity Easy Complex

Remote calling N/A Involved

Service governance N/A Involved

Requirements for R&D personnel Low High

Dependency on tools Low Relatively high

O&M complexity Low High



4

Major Difficulty in Building the Microservice Architecture: 

How to Split an Application into Microservices?

• Factors

>Team size

>Delivery cycle

>Business direction

>Fault scope

>Data scale

>Throughput

>Consistency

> ...



5

Possible Problems Caused by Improper Splitting

•Possible problems:

>Services increase explosively, making service O&M more complex.

>Too few services are available, which cannot be flexibly used.

>One user story may affect multiple services.

>APIs change frequently.

>A massive number of association queries are performed.

>The system architecture complexity increases.



6

Slow

Expensive

Difficult

View

Control

Model

XX UIs

Service 

orchestration

DAO object

SQL statement

Build inputs

Convert into service 

independency

Service rebuilding 

model
Automatic sharding

Automatically generate 

microservice code

Distributed

Scalable

Horizontaly scalable

View

Control

Model

XX UIs

Service 

orchestration

Microservice

-based

C
lo

u
d

-b
a

s
e
d

 a
p

p
lic

a
tio

n
s

 

o
f e

n
te

rp
ris

e
s

T
ra

d
itio

n
a

l e
n

te
rp

ris
e

 IT
 

a
p

p
lic

a
tio

n
s

Read service logs to 
identify the service 
access frequency.

Scan the Model layer 
to identify JOIN table 
sizes.

Major difficulty: identifying relevant code modifications
Core technology: application-level formal verification

Tool for Splitting Monolithic Applications into Microservices Improves 

Development Efficiency

Supported 

processes

Methodology
• ThoughtWorks 5 Steps and 1 Phase

• DDD aggregation

• Event Sourcing

• Command Query Responsibility 

Segregation (CQRS)

Current 

method

+

Application to the 

cloud + IaaS

Service 

innovation
e.g. AISplit data tables Split UIs and service logic

Typical Process of Transforming Applications to Microservices
Challenges: The 

rebuilding process is 

highly business-related 

and time-consuming, and 

it requires participation of 

business and 

microservice experts.

Key technology: toolkit for 

transforming applications 

to microservices
Split applications into microservices based on SQL statements, logs, and code, and modify related code.

Transformation of applications to microservices + PaaS

Massive 

investment

Service reconstruction



7

Tool for Splitting Applications to Microservices — Automatic Sharding

...

Syntax analysis

Syntax analysis

Syntax analysis

Table correlation analysis
Graph segmentation

+ heuristic rule

Step 1: Extract all SQL statements in the system.

Step 2: Create syntax trees using SQL statements.

Step 3: Analyze the table correlations in each syntax tree and 

generate a weighted graph.

Step 4: Shard data tables to databases by means of the graph 

segmentation algorithm and heuristic rule.

Principle: loosely coupled and highly cohesive

Coupling: sum of weights of the edges connecting microservices after an application is split into microservices

Cohesion: sum of weights of the edges between tables in a microservice after an application is split into 

microservices

Heuristic rule (customizable) for splitting microservices using the graph searching algorithm:

Rule 1: greedy algorithm

Rule 2: An independent table can belong to any microservice or be an independent microservice.

Rule 3: The number of tables belonging to the same microservice cannot be less than 5 (configurable).

Rule 4: Tables whose correlation is greater than 10 (configurable) belong to the same microservice.

SQL 

statement

SQL 

statement

SQL 

statement



8

Tool for Splitting Monolithic Applications into Microservices

Monolithic application

Monolithic database

Step 1: Based on the SQL 

correlation and using times, 

identify the table with the 

highest correlation and 

classify the table as a 

microservice.

Step 2: Decouple databases by 

adjusting the table structure to 

prevent a microservice from 

accessing different databases 

(denormalized database, service 

rebuilding).

Step 3: Horizontally shard 

tables with large volumes of 

data to horizontally scale up 

capacity and improve the 

access speed (partitioning and 

sharding).

Step 4: Automatically adjust SQL statements such as DDL/CRUD based on table structure changes to generate Java 

data access services.

Step 5: Execute data tables and migrate data.

Reversely deduce the 

policy for splitting 

monolithic applications 

into microservices

based on the table 

correlation and usage.

x

x

Microservice databaseMicroservice databaseMicroservice database

Service A Service BService A Service BService A Service B

Service Application Layer Service Application Layer Service Application Layer

Database A Database B
Database A Database B

Database A Database B



9

Principle for Splitting Monolithic Applications into Microservices

handler

scissors

1. Specify the code path.

/home/xxx/project

2. Specify the algorithm 

(greedy algorithm by 

default).

3. Specify the SQL rule. 

(MySQL is used by default, 

and intelligent analysis will 

be used in the future.)

Parser

(mybatis/hibernate/...) graphanalyzer

sqlanalyzer

algorithm

(greedy/clustering/...)

output
Data splitting 

suggestion 

file

Parse the code and collect SQL statements.

Preprocessing during development: 

Use the Antlr4 to generate objects 

of parsing rules that are 

recognizable to Java, and embed 

the objects into the source code.

Generate an SQL 

statement set (language of 

MySQL or other 

databases).

MySQL/Oracle 

rule file

Generate the table correlation list.

Calculate weights and generate a graph.

Generate the 

weight graph. 

Choose and call 

the specified 

algorithm.

Greedy/Spectral clustering algorithm

Format the content.

Parse SQL statements according to the rule.

Return the calculation result.

1

2

3

4

5

6

7

8

9

sqlrule

(MySQL/Oracle/...)

Select a rule and 

transparently transfer 

the SQL statement 

set.

Input the table correlation list.



10

Case 1: Analysis on Splitting Legacy System 1 into Microservices

(Using the Graph Searching Algorithm)

Catalog Bussiness-Entity

Catalog-Node

Node-Relation

Table-Field Table-Field-Value Record-Item-Relation

Attr-Value-Relation

Sale-Product

Sale-Product-Relation

Attribution-Value-

Relation

Attribute-Classfication

Picture

Meta-Attribute

Attribute-Option
Item

Module

Module-Instance

Module-Instance-

Parameter

Contract-Shop Parameter

Contract-Ccordc-

Relation
Rule-Package

Register Dual

Bussiness-

Coefficient

12

8

2

8

20

2

2

22
5

2

4

4

3

6

6

39

5

5

2

2 2

22

4

The picture shows offering library, template library, and discrete tables from left to right. The offering library and template library come from the 

rebuilt legacy system. The discrete tables are introduced by the system to associate with external systems and are stored in a separate library.



11

Case 2: Analysis on Splitting Legacy System 2 into Microservices

(Using the Graph Searching Algorithm)

The picture shows extended attribute services, model/model instance services, catalog services, and discrete table services from left to right. The 

discrete table services in red should be classified into the model/model instance services, but are automatically identified as independent services. This is 

because the SQL does not present the correlation between these discrete table services and model/model instances.



12

API Management and Control Challenges in Microservice Architecture

• Explosive growth of APIs in the microservice architecture

• Mobile Internet, and IoT

• An API is equivalent to a contract.

• API First, a developer for decoupling services



13

ServiceStage Contract Management Tool — Separation of Management 

and Control



Copyright©2019 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive 

statements including, without limitation, statements regarding 

the future financial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that 

could cause actual results and developments to differ materially 

from those expressed or implied in the predictive statements. 

Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei 

may change the information at any time without notice. 

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。

Bring digital to every person, home and 
organization for a fully connected, 
intelligent world.

Thank you.


